Exact scaling in competitive growth models.
نویسندگان
چکیده
A competitive growth model (CGM) describes the aggregation of a single type of particle under two different growth rules with occurrence probabilities p and 1-p . We explain the origin of the scaling behavior of the resulting surface roughness at small p for two CGM's which describe random deposition (RD) competing with ballistic deposition and RD competing with the Edward-Wilkinson (EW) growth rule. Exact scaling exponents are derived. The scaling behavior of the coefficients in the corresponding continuum equations are also deduced. Furthermore, we suggest that, in some CGM's, the p dependence on the coefficients of the continuum equation that represents their universality class can be nontrivial. In some cases, the process cannot be represented by a unique universality class. In order to show this, we introduce a CGM describing RD competing with a constrained EW model. This CGM shows a transition in the scaling exponents from RD to a Kardar-Parisi-Zhang behavior when p is close to 0 and to a Edward-Wilkinson one when p is close to 1 at practical time and length scales. Our simulation results are in excellent agreement with the analytic predictions.
منابع مشابه
Evaluating the Growth and Evolution of Facility Management in Innovating Integrating and Aligning Business Strategies to Achieve a Competitive Advantage
The South African Facilities Management (FM) industry has seen increased operational strategy complexity from single-site contractors providing basic janitorial services to highly integrated and bundled FM service providers. Despite these major changes, very little research has been conducted on evaluating the effectiveness of FM in innovating, integrating and aligning business strategies to a...
متن کاملScaling and Fractal Concepts in Saturated Hydraulic Conductivity: Comparison of Some Models
Measurement of soil saturated hydraulic conductivity, Ks, is normally affected by flow patterns such as macro pore; however, most current techniques do not differentiate flow types, causing major problems in describing water and chemical flows within the soil matrix. This study compares eight models for scaling Ks and predicted matrix and macro pore Ks, using a database composed of 50 datasets...
متن کاملModel of Cluster Growth and Phase Separation : Exact Results in One Dimension
We present exact results for a lattice model of cluster growth in 1D. The growth mechanism involves interface hopping and pairwise annihilation supplemented by spontaneous creation of the stable-phase, +1, regions by overturning the unstable-phase, −1, spins with probability p. For cluster coarsening at phase coexistence, p = 0, the conventional structure-factor scaling applies. In this limit o...
متن کاملDevelopment of a Model for Locating Hubs in a Competitive Environment under Uncertainty: A Robust Optimization Approach
This article explores the development of previous models to determine hubs in a competitive environment. In this paper, by comparing parameters of the ticket price, travel time and the service quality of hub airports, airline hubs are divided into six categories. The degree of importance of travel time and travel cost are determined by a multivariate Lagrange interpolation method, which can pla...
متن کاملTHE SCALING LAW FOR THE DISCRETE KINETIC GROWTH PERCOLATION MODEL
The Scaling Law for the Discrete Kinetic Growth Percolation Model The critical exponent of the total number of finite clusters α is calculated directly without using scaling hypothesis both below and above the percolation threshold pc based on a kinetic growth percolation model in two and three dimensions. Simultaneously, we can calculate other critical exponents β and γ, and show that the scal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 72 2 Pt 2 شماره
صفحات -
تاریخ انتشار 2005